1. Navas-Molina, J.A., Peralta-Sánchez, J.M., González, A., McMurdie, P.J., Vázquez-Baeza, Y., Xu, Z., Ursell, L.K., Lauber, C., Zhou, H., Song S.J., Huntley, J., Ackermann, G.L., Berg-Lyons, D., Holmes, S., Caporaso, J.G., Knight, R. (2013). “Advancing Our Understanding of the Human Microbiome Using QIIME”. Methods in Enzymology. (531): 371-444
  1. Ewing, B., Hillier, L., Wendi, M.C., Green, P. (1998). (1998). “Base-calling of automated sequencer traces using phred. I. Accuracy assessment”. Genome Research. 8 (3): 175–185.
  1. Golay, Marcel J. E. (1949). “Notes on Digital Coding”. Proc. IRE. (37): 657
  1. Caporaso, J., Lauber, C.L., Walter, W.A. Berg0Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Mauer, M., Gormley, N., Gilbert, J.A., Smith, G., Knight, R., (2012) “Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms”. ISME J.
  1. Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J., Xu, Z.Z., Kightley, E.P., Thompson, L.R., Hyde, E.R., Gonzalez, A., Knight, R. (2017) “Deblur rapidly resolves single-nucleotide community sequence patterns.” mSystems. 2 (2) e00191-16.
  1. Chou, H.H., Holmes, M.H. (2001). “DNA sequence quality trimming and vector removal”. Bioinformatics. 17 (12):1093–1104.
  1. McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., Anderson, G. L., Knight, R., Hugenholtz, P. (2012). “An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.” The ISME Journal. 6(3): 610–618.
  1. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F. O. (2013). “The SILVA ribosomal RNA gene database project: improved data processing and web-based tools”. Nucl. Acids Res. 41 (D1): D590-D596.
  1. Abarenkov, K., Nilsson, R. H., Larsson, K., Alexander, I. J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, R., Sen, R., Taylor, A. F. S., Tedersoo, L., Ursing, B. M., Vrålstad, T., Liimatainen, K., Peintner, U., Kõljalg, U. (2010). “The UNITE database for molecular identification of fungi - recent updates and future perspectives”. New Phytologist. 186(2): 281-285.
  1. Kopylova, E., Noe, L., Touzet, H. (2012). “SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data”. Bioinformatics. 28 (24) 3211-7.
  1. Heck, K.L., Van Belle, G., Simberloff, D. (1975). “Explicit Calculation of the Rarefaction Diversity Measurement and the Determination of Sufficient Sample Size”. Ecology. 56(6): 1459-1461
  1. McMurdie, P.J. and Holmes, S. (2014). “Waste not, want not: Why rarefying microbiome data is inadmissible”. PLOS Computational Biology 10(4).
  1. Whittaker, R.H. (1960). “Vegetation of the Siskiyou Mountains, Oregon and California”. Ecological Monographs. (30)” 279–338.
  1. Chao, A. (1984). “Non-parametric estimation of the number of classes in a population”. Scandinavian Journal of Statistics (11): 265-270.
  1. Berger, W.H. and Parker, F.L. (1970). “Diversity of planktonic Foraminifera in deep sea sediments”. Science. (168): 1345-1347.
  1. Pielou, E.C. (1975). Ecological Diversity. New York, Wiley InterScience.
  1. Chase, J.M., and Knight, R. (2013). “Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough”. Ecology Letters (16): 17-26.
  1. Faith. D.P. (1992). “Conservation evaluation and phylogenetic diversity”. Biological Conservation. (61) 1-10.
  1. Fisher, R.A., Corbet, A.S. and Williams, C.B. (1943). “The relation between the number of species and the number of individuals in a random sample of an animal population”. Journal of Animal Ecology. (12): 42-58.
  1. Gini, C. (1912). “Variability and Mutability”. C. Cuppini, Bologna. 156.
  1. Good. I.J (1953) “The populations frequency of Species and the Estimation of Populations Parameters”. Biometrika. 40(3/4):237-264.
  1. Heip, C. (1974). “A new index measuring evenness”. J. Mar. Biol. Ass. UK. (54): 555-557.
  1. Lladser, M.E., Gouet, R., Reeder, R. (2011). “Extrapolation of Urn Models via Poissonization: Accurate Measurements of the Microbial Unknown”. PLoS.
  1. Magurran, A.E. (2004). “Measuring biological diversity”. Blackwell. 76-77.
  1. McIntosh, R.P. (1967). “An index of diversity and the relation of certain concepts to diversity”. Ecology. (48): 392-404.
  1. Raaijmakers, J.G.W. (1987). “Statistical analysis of the Michaelis-Menten equation”. Biometrics. (43): 793-803.
  1. DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K. Huber, T., Davis, D., Hu, P., Andersen, G.L. (2006). “Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB”. Applied and Environmental Microbiology (72): 5069–5072.
  1. Pielou, E.C. (1966). “The measurement of diversity in different types of biological collections”. J. Theor. Biol. (13): 131-144.
  1. Robbins, H.E. (1968). “Estimating the Total Probability of the unobserved outcomes of an experiment”. Ann Math. Statist. 39(1): 256-257.
  1. Shannon, C.E. and Weaver, W. (1949). “The mathematical theory of communication”. University of Illonois Press, Champaign, Illonois.
  1. Simpson, E.H. (1949). “Measurement of Diversity”. Nature. (163): 688.
  1. Strong, W.L. (2002). “Assessing species abundance uneveness within and between plant communities”. Community Ecology. (3): 237-246.
  1. Chang, Q., Luan, Y., & Sun, F. (2011). “Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny”. BMC Bioinformatics.12(1): 118.
  1. Sorenson, T. (1948) “A method of establishing groups of equal amplitude in plant sociology based on similarity of species content.” Kongelige Danske Videnskabernes Selskab 5.1-34: 4-7.
  1. Lance, Godfrey L.N. and Williams, W.T. (1967). “A general theory of classificatory sorting strategies II. Clustering systems.” The computer journal 10 (3):271-277.
  1. Cantrell, C.D. (2000). “Modern Mathematical Methods for Physicists and Engineers”. Cambridge University Press.
  1. Paul, E.B. (2006). “Manhattan distance”. Dictionary of Algorithms and Data Structures
  1. Galton, F. (1877). “Typical laws of heredity”. Nature. 15 (388): 492–495.
  1. Ochiai, A. (1957). “Zoogeographical Studies on the Soleoid Fishes Found in Japan and its Neighhouring Regions-II”. Nippon Suisan Gakkaishi. 22(9): 526-530.
  1. Dice, Lee R. (1945). “Measures of the Amount of Ecologic Association Between Species”. Ecology. 26 (3): 297–302.
  1. Legendre, P. and Caceres, M. (2013). “Beta diversity as the variance of community data: dissimilarity coefficients and partitioning.” Ecology Letters. 16(8): 951-963.
  1. Chen, F., Bittinger, K., Charlson, E.S., Hoffmann, C., Lewis, J., Wu, G. D., Collman, R.G., Bushman, R.D., Li,H. (2012). “Associating microbiome composition with environmental covariates using generalized UniFrac distances.” Bioinformatics. 28 (16): 2106-2113.
  1. Hamming, R.W. (1950) “Error Detecting and Error Connecting Codes”. The Bell System Technical Journal. (29): 147-160.
  1. Jaccard, P. (1908). “Nouvellesrecherches sur la distribution florale.” Bull. Soc. V and. Sci. Nat., (44):223-270.
  1. Kulcynski, S. (1927). “Die Pflanzenassoziationen der Pieninen. Bulletin International de l’Academie Polonaise des Sciences et des Lettres”. Classe des Sciences Mathematiques et Naturelles. 57-203.
  1. Janson, S., and Vegelius, J. (1981). “Measures of ecological association”. Oecologia. (49): 371–376.
  1. Tanimoto, T. (1958). “An Elementary Mathematical theory of Classification and Prediction”. New York: Internal IBM Technical Report.
  1. Russell, P.F. and Rao, T.R. (1940). “On habitat and association of species of anopheline larvae in south-eastern Madras”. J. Malaria Inst. India. (3): 153-178.
  1. Sokal, R.R. and Michener, C.D. (1958). “A statistical method for evaluating systematic relationships”. Univ. Kans. Sci. Bull. (38) 1409-1438.
  1. Sokal, R.R. and Sneath, P.H.A. (1963). “Principles of Numerical Taxonomy”. W. H. Freeman, San Francisco, California.
  1. Lozupone, C. and Knight, R. (2005). “UniFrac: a new phylogenetic method for comparing microbial communities.” Applied and environmental microbiology 71 (12): 8228-8235.
  1. Chan, Y., Ching, W.K., Ng, M.K., Huang, J.Z. (2004). “An optimization algorithm for clustering using weighted dissimilarity measures”. Pattern Recognition. 37(5): 943-952.
  1. Lozupone, C. A., Hamady, M., Kelley, S. T., Knight, R. (2007). “Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities”. Applied and Environmental Microbiology. 73(5): 1576–85.
  1. Ronbach, L.J. (1951). “Coefficient alpha and the internal structure of tests”. Psychometrika. 16 (3): 297–334.
  1. Spearman, C. (1904). “The proof and measurement of association between two things”. American Journal of Psychology. (15): 72–101.
  1. Pearson, K. (1895). “Notes on regression and inheritance in the case of two parents”. Proceedings of the Royal Society of London. (58): 240–242.
  1. Pearson, K. (1901). “On Lines and Planes of Closest Fit to Systems of Points in Space” Philosophical Magazine. 2 (11): 559–572.
  1. Vazquez-Baeza, Y., Pirrung, M., Gonzalez, A., Knight, R. (2013). “Emperor: A tool for visualizing high-throughput microbial community data”. Gigascience 2(1):16.
  1. Clarke, K.R. (1993). “Non-parametric multivariate analyses of changes in community structure”. Austral Ecology. 18 (1): 117–143.
  1. Anderson, M.J. (2001). “A new method for non-parametric multivariate analysis of variance”. Austral Ecology. 26 (1): 32–46
  1. Kruskal, W.H. and Wallis, W.A. (1952). “Use of ranks in one-criterion variance analysis”. Journal of the American Statistical Association. 47 (260): 583–621.
  1. Illumina. (2014, May 21). Illumina MiSeq, 16S rRNA Sequencing and the American Gut Project. Retrieved from
  1. An Introduction to the Actinobacteria. (2007). Microbiology today, 34(2).
  1. Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H-P., Clément, C., Ouhdouch, Y., and van Wezel, G.P. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43.
  1. Basics of alpha-diversity with fuzzy microbe demo - University of Colorado Boulder, University of Colorado System, University of California, San Diego. (n.d.). Retrieved from
  1. Demo: Tour of the Knight Lab - University of Colorado Boulder, University of Colorado System, University of California, San Diego. (n.d.). Retrieved from
  1. Thomas, F., Hehemann, J., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and Gut Bacteroidetes: The Food Connection. Frontiers in Microbiology, 2.
  1. Beta-diversity, and visualizing differences - University of Colorado Boulder, University of Colorado System, University of California, San Diego. (n.d.). Retrieved from
  1. Next Generation Sequencing (NGS) - An Introduction. (2015, June 22). Retrieved from
  1. Knights, D. (2016, April 01). Microbiome Discovery 19: Compositionality. Retrieved from
  1. Morton, J.T., Sanders, J., Quinn, R.A., Mcdonald, D., Gonzalez, A., Vázquez-Baeza, Y., Navas-Molina, J.A., Song, J.S., Metcalf, J.L., Hyde, E.R., Lladser, M., Dorrestein, P.C., and Knight, R. (2017). Balance Trees Reveal Microbial Niche Differentiation. MSystems, 2(1).
  1. Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G.F., Chater, K.F., and Sinderen, D.V. (2007). Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews, 71(3): 495-548.
  1. Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and (2005). Obesity alters gut microbial ecology. PNAS. 102 (31): 11070-11075.
  1. Low G C Gram Positive Bacteria. (n.d.). Retrieved from
  1. Williams, K. P., Gillespie, J. J., Sobral, B. W., Nordberg, E. K., Snyder, E. E., Shallom, J. M., and Dickerman, A. W. (2010). Phylogeny of Gammaproteobacteria. Journal of Bacteriology, 192(9), 2305-2314.
  1. NIH Human Microbiome Project. (2009). Microbe Magazine, 4(9), 393-393.
  1. The Human Microbiome Consotrium. (2012). Structure, Function and diversity of the healthy human microbiome. 486: 207-214.
  1. Yang, B., Wang, Y., & Qian, P. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics. 17(1).
  1. Illumina. (2016, October 05). Illumina Sequencing by Synthesis. Retrieved from
  1. Lan, Y., Rosen, G., and Hershberg, R. (2016). Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains. Microbiome, 4(1).
  1. How do we identify a microbe? - University of Colorado Boulder, University of Colorado System, University of California, San Diego. (n.d.). Retrieved from
  1. Nguyen, N., Warnow, T., Pop, M., & White, B. (2016). A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. Npj Biofilms and Microbiomes, 2(1).
  1. Knights, D. (2016, January 22). Microbiome Discovery 5: Picking OTUs. Retrieved from
  1. Rideout, J.R., He, Y., Navas-Molina, J.A., Walters, W.A., Ursell, L.K., Gibbons, S.M., Chase, J., McDonald, D., Gonzalez, A., Robbins-Pianka, A., Clemente, J.C., Gilber, J., Huse, S.M., Zhou, H.W., Knight, R., and Caporaso, J.G. (2014). Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences.
  1. Griffen, A.L., Beall, C.J., Campbell, J.H., Firestone, N.D., Kumar, P.S., Yang, Z.K., Podar, M., and Leys, E. J. (2011). Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME Journal, 6(6): 1176-1185.
  1. Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J.R., Vazquez-Baeza, Y., Birmingham, A., Hyde, E.R., and Knight, R. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(1).
  1. Polymerase Chain Reaction (PCR) - Quantitative PCR (qPCR). (2016, April 28). Retrieved from
  1. Basics of high throughput DNA sequencing. (2017, February 11). Retrieved December 19, 2017, from
  1. Callahan, B.J., Mcmurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., and Holmes, S.P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583.
  1. Knights, D. (2016, February 12). Microbiome Discovery 10: Statistical testing part 1. Retrieved from
  1. Knights, D. (2016, March 04). Microbiome Discovery 11: Statistical testing part 2. Retrieved from